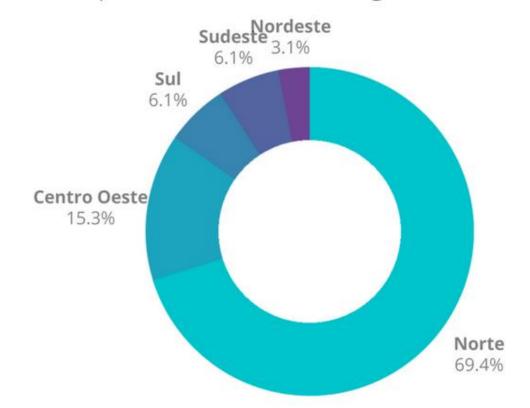


Soluções Ambientais e Bioengenharia

A CRISE HÍDRICA: UMA OPORTUNIDADE PARA MUDANÇAS DE HÁBITOS E ATITUDES

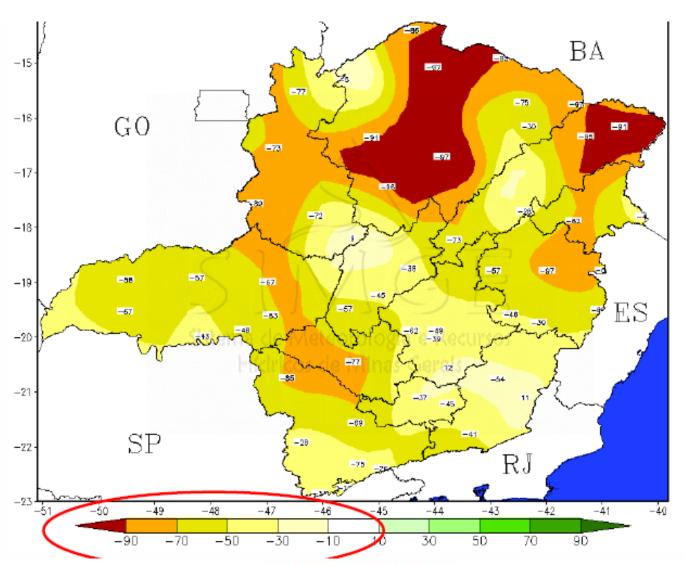
SEBASTIÃO TOMAS CARVALHO
GEÓGRAFO, MESTRE EM ENGENHARIA INDUSTRIAL
UNILESTE - MG
ANALISTA AMBIENTAL SÊNIOR


PIOR SECA DOS ÚLTIMOS 70 OU 80 ANO

AFETOU O SUDESTE REGIÃO MAIS POPULOSA DO BRASIL

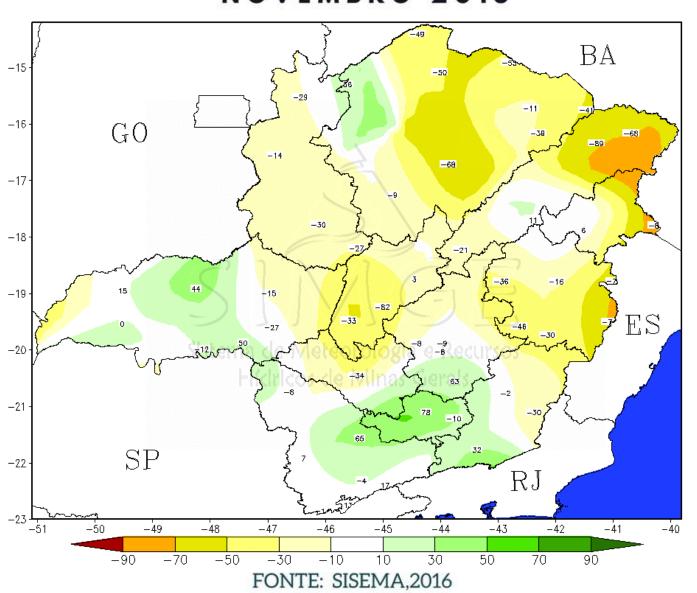
SISTEMA CANTAREIRA; RISCO DE RACIONAMENTO EM MINAS GERAIS

Disponibilidade de água no Brasil

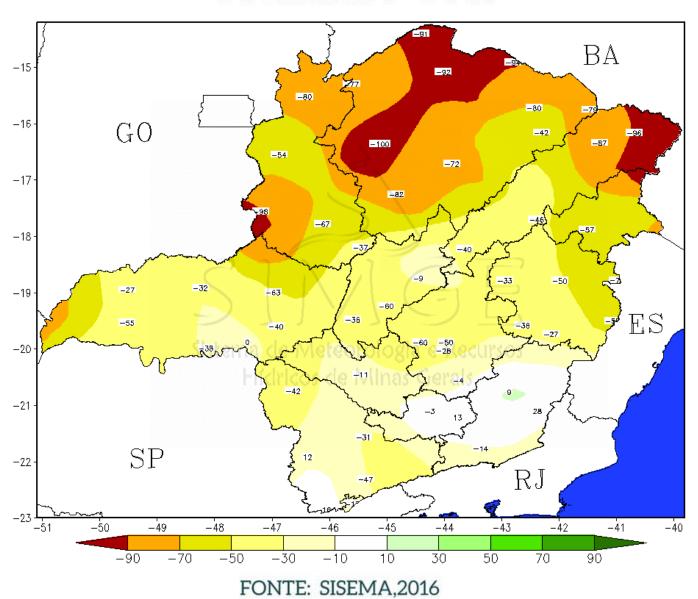


SUDESTE, A REGIÃO MAIS POPULOSA DO PAÍS POSSUI POUCA DISPONIBILIDADE HÍDRICA, JÁ NO NORTE ONDE SE ENCONTRA UMA MENOR POPULAÇÃO, HÁ UMA GRANDE DISPONIBILIDADE HÍDRICA.

FONTE: MENDONÇA E SANTOS, 2006



ANOMALIAS DE PRECIPITAÇÃO OUTUBRO 2015



FONTE: SISEMA,2016

ANOMALIAS DE PRECIPITAÇÃO NOVEMBRO 2015

ANOMALIAS DE PRECIPITAÇÃO DEZEMBRO 2015

Rio Doce deixa de correr na foz original e de desaguar no Atlântico pela primeira vez na história

CRISE HÍDRICA NO VALE DO AÇO

27/09/2015 - 13h27

Copasa anuncia solução para falta de água Sob calor intenso, moradores de vários bairros de Ipatinga e Santana do Paraíso estão sem água desde sábado

26/09/2013 11h19 - Atualizado em 26/09/2013 11h21

Moradores de Ipaba reclamam da falta de água Moradores dizem que não é a primeira vez que o problema ocorre. Copasa informa que capatação foi reduzida devido à estiagem.

28/09/2015 12h51 - Atualizado em 28/09/2015 12h51

Moradores do Vale do Aço reclamam da falta de água em alguns bairros

Moradores de Timóteo e Ipatinga dizem que estão sem água há uma semana.

Rompimento da barragem em Mariana

Chegada da lama ao Rio Doce leva medo e caos a Governador Valadares

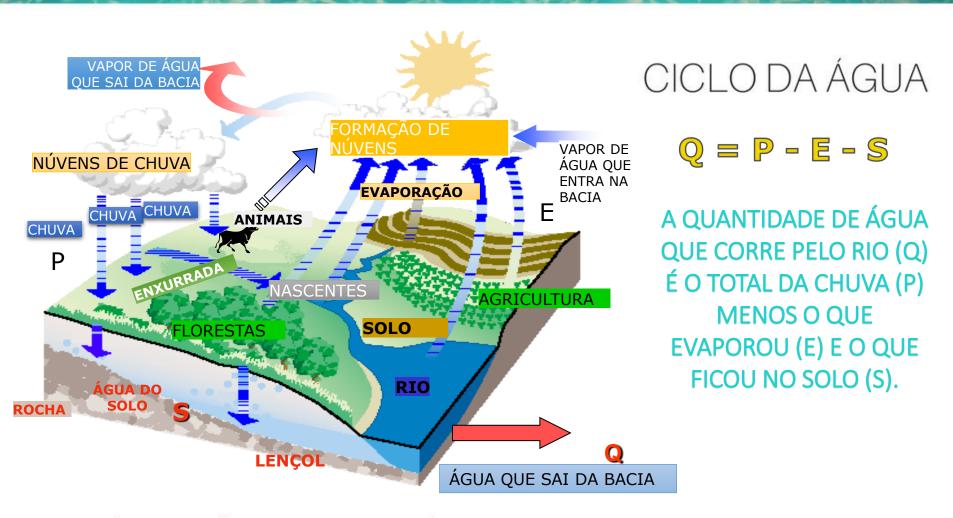
Bento Rodrigues

Rio Doce

Governador Valadares

Lama de rejeitos da Samarco interdita praias de Regência Augusta e Povoação, em Linhares

ÁGUA


RECURSO NATURAL ESSENCIAL PARA A VIDA

FUNDAMENTAL NO DESENVOLVIMENTO DAS POPULAÇÕES

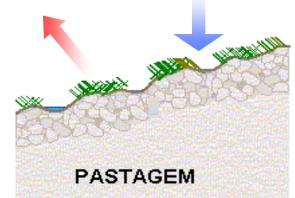
O QUE É NECESSÁRIO PARA HAVER ÁGUA O ANO TODO EM UM RIO OU NASCENTE?

RECARGA DE NASCENTES

Evaporação da água das folhas e galhos

Evaporação da água presa no sub-bosque

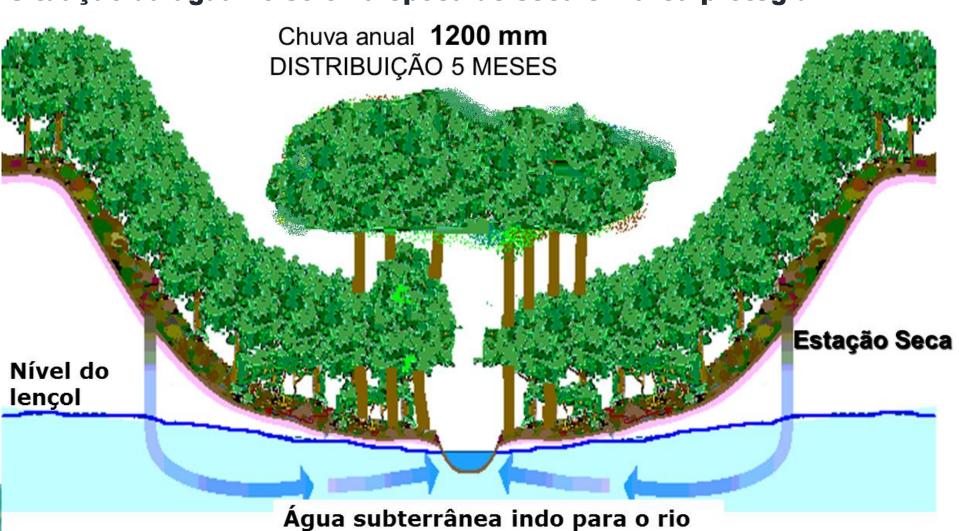
> Evaporação da água presa na serapilheira



Enxurrada

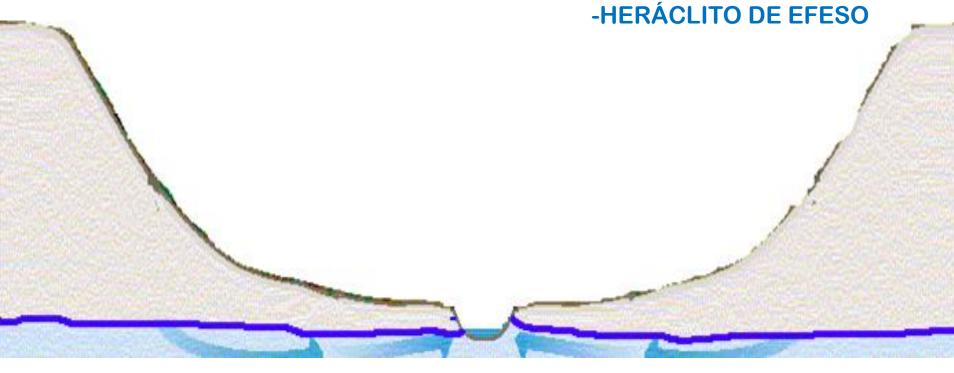
Chuva

Evaporação do solo e do capim


enxurrada

PASTAGEM

RECARGA DE NASCENTES


Situação da água no solo na época de seca em área protegid

Situação da água no solo na época de seca / áreas protegidas

"Nenhum homem pode banhar-se duas vezes no mesmo rio... pois na segunda vez o rio já não é o mesmo, nem tão pouco o homem"

CRISE HÍDRICA

CONSCIENTIZAR E MUDAR
ATITUDES

O QUE **PODEMOS** FAZER PARA MINIMIZAR OS **IMPACTOS?**

- Reduzir o consumo de água em casa
- Diminuir o tempo de banho
- Fechar a torneira enquanto escova os dentes
- Fechar a torneira enquanto ensaboa as vasilhas
- Evitar o uso de mangueiras
- Usar dispositivos para diminuir a vazão
- Eliminar vazamentos

UTILIZAR ÁGUAS DE CHUVA PARA USOS MENOS NOBRES

INICIATIVA

CRISE HÍDRICA: FUNCIONÁRIO CENIBRA CRIA SISTEMA DE REAPROVEITAMENTO DE ÁGUA

Publicado em 09/02/2015

RESIDÊNCIA PRATICA CONSERVAÇÃO DE ÁGUA EM TIMÓTEO - MG

TECNOLOGIA DE TRATAMENTO IMITA A NATUREZA

CAPTAÇÃO E UTILIZAÇÃO DE ÁGUÁ DA CHUVA

Uma forma simples e eficaz de economizar água imprópria para consumo humano, mas que pode ser usada para: Irrigar plantas;

Descargas de vasos sanitários;

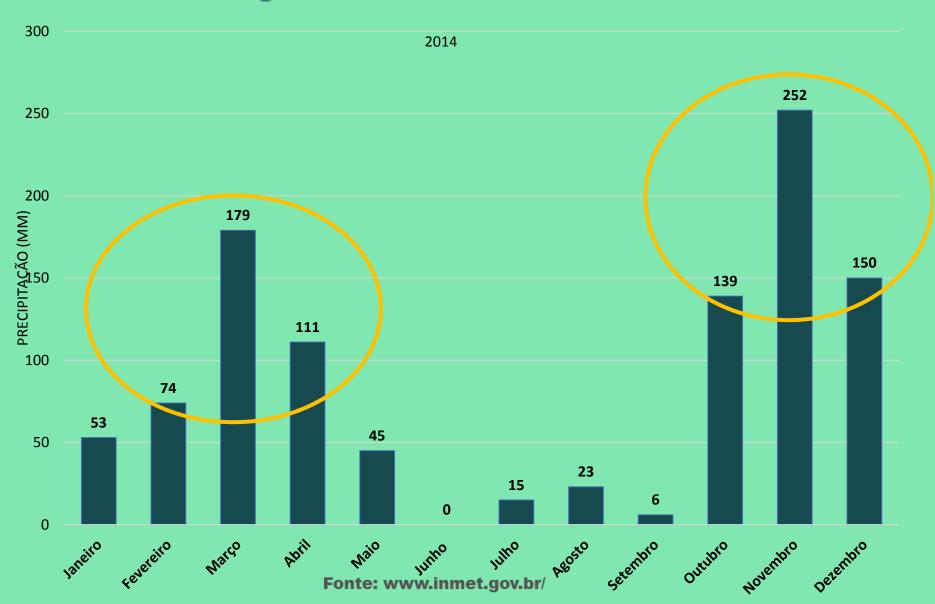
Lavagens de pisos, carros,

máquinas;

Limpeza doméstica;

Lavar roupa.

- DESCARTAR A PRIMEIRA ÁGUA DE CHUVA FORTE:
 NECESSÁRIO PARA LAVAR O TELHADO
- SEPARAR OS RESÍDUOS SÓLIDOS COMO FOLHAS, GALHOS E AREIAS
- ARMAZENAR EM LOCAL ADEQUADO E TAMPÁ-LO PARA EVITAR
 A PROLIFERAÇÃO DE MOSQUITOS TRANSMISSORES DE DOENÇAS


CUIDADOS NECESSÁRIOS

Calhas caixas Bomba Tubulações

OQUE FAZER QUANDO NAO HOUVER CHUVA?

ESTAÇÃO A511 TIMÓTEO 2014

ESTAÇÃO A511 TIMÓTEO 2015

Fonte: www.inmet.gov.br/

ESTAÇÃO A511 TIMÓTEO 2016

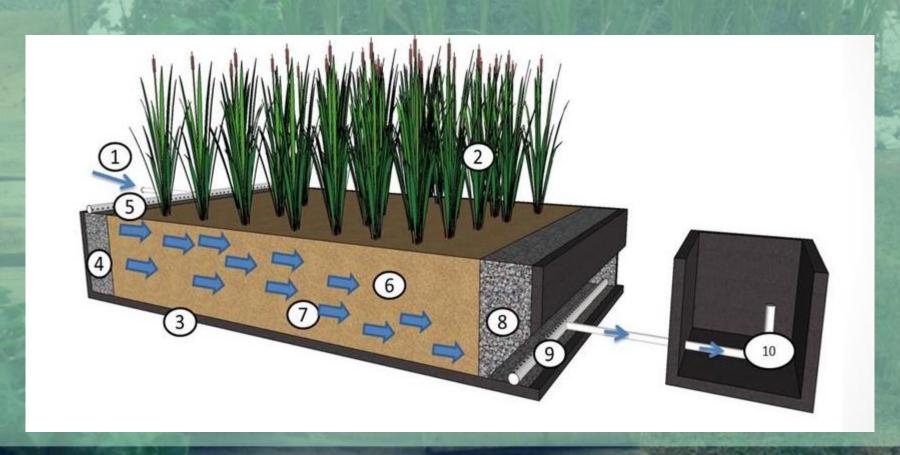
Fonte: www.inmet.gov.br/

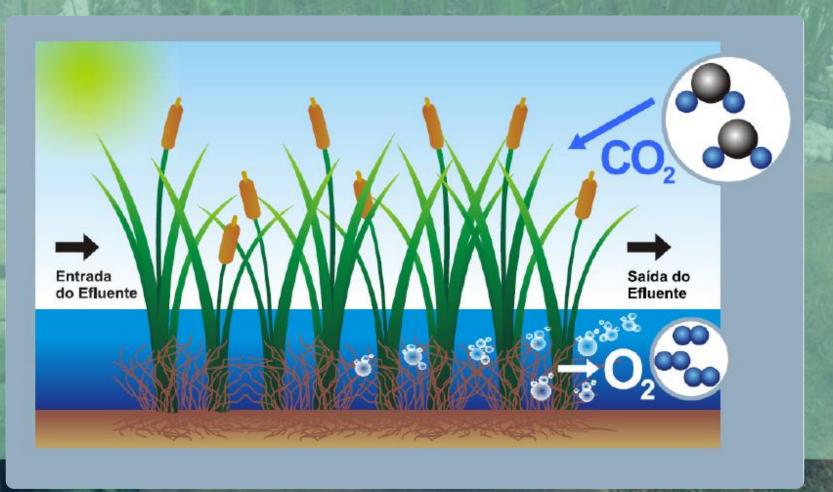
O QUE SÃO ÁGUAS CINZAS?

ÁGUAS PROVENIENTES DE:

- CHUVEIROS;
- PIAS;
- LAVANDERIAS

IMAGENS





TRATO COM USO DE PLANTAS AQUÁTICAS

MECANISMOS DE TRATAMENTO

O SISTEMA

BIOFILTRO

WETLAND

FILTRO DE CARVÃO

LOCAL: RESIDÊNCIA DE TIMÓTEO/MG LESTE DE MINAS GERAIS

A IMPLEMENTAÇÃO

APENAS WETLAND WETLAND →FILTRO DE CARVÃO BIOFILTRO+ WETLAND+ FILTRO DE CARVÃO

NOV 2014 JUL 2015 AGO 2015

TRATAMENTO DE ÁGUAS CINZA

chuveiros, pias e lavanderia

biofiltro

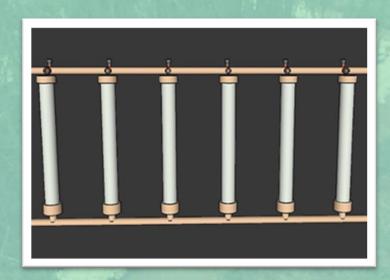
wetland

2,5m

0,95m

Brita nº 1

1_m

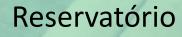

TRATAMENTO DE ÁGUAS CINZA

chuveiros, pias e lavanderia

biofiltro

wetland

filtros de carvão ativado


TRATAMENTO DE ÁGUAS CINZA

chuveiros, pias e lavanderia

biofiltro

wetland

filtros de carvão ativado

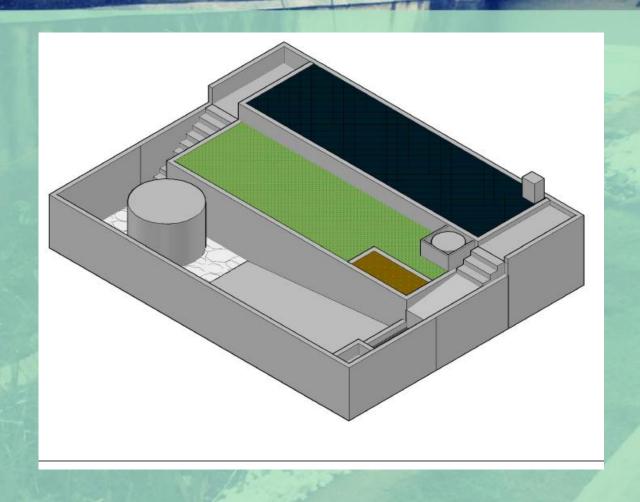
chuveiros, pias e lavanderia

biofiltro

wetland

filtros de carvão ativado

- √ limpeza de piso;
- ✓ lavagem de automóveis;
- ✓ irrigação de hortas e jardins;
 - ✓ nas bacias sanitárias da residência.


Reservatório

Reuso

DESENHO ESQUEMÁTICO

DESENHO EM 3 DIMENSÕES

REDUÇÃO DE CONSUMO 2015

Mês	Consumo m³	Redução
Dezembro	20 m ³	-
Janeiro	14 m ³	30 %
Fevereiro	09 m ³	55 %
Março	03 m^3	85 %
Abril	05 m ³	75%
Maio	06m ³	70%
Junho	04 m ³	80%
Julho	12 m ³	40%
Agosto	10 m ³	50%
Setembro	12 m ³	40%
Outubro	10 m ³	50%
Novembro	08 m^3	60%
Dezembro	09m³	55%

AVALIAÇÃO DO DESEMPENHO

COLETAS DE AMOSTRAS DE AFLUENTE E EFLUENTE DO SISTEMA PARA ANÁLISES LABORATORIAIS.

PARAMETROS ANALISADOS:

PH; TURBIDEZ; SÓLIDOS SUSPENSOS TOTALS (SST); DEMANDA QUÍMICA DE OXIGÊNIO (DQO); DEMANDA BIOQUÍMICA DE OXIGÊNIO (DBO); SURFACTANTES, ÓLEOS E GRAXAS E SÓLIDOS SEDIMENTÁVEIS (SOMENTE NA ÚLTIMA COLETA).

PARA AVALIAÇÃO DO DESEMPENHO

Etapa	Data da coleta	Observações – unidades instaladas no momento da coleta
1	Dez/2014	Apenas <i>Wetland</i>
1	Mar/2015	Apenas <i>Wetland</i>
II	Jul/2015	<i>Wetland</i> + Filtros de carvão ativado
111	Set/2015	Biofiltro + <i>Wetland</i> + Filtros de
111	361/2013	carvão ativado
111	Dez/2015	Biofiltro + <i>Wetland</i> + Filtros de
111	De2/2013	carvão ativado
111	Fev/2016	Biofiltro + <i>Wetland</i> + Filtros de
111	rev/2010	carvão ativado

Resultado das análises laboratoriais das amostras do sistema de tratamento de águas cinzas.

Parâmetros		DEZ/14	MAR/15	JUL/15	SET/15	DEZ/15	FEV/16
			WL	WL + FCA	BF + WL + FCA	BF + WL + FCA	BF + WL + FCA
»II	Entrada	6,30	4,72	6,15	7,10	5,91	6,51
pН	Saída	6,77	7,25	7,02	7,80	8,48	7,96

BF = Biofiltro. WL = Wetland. FCA = Filtro de Carvão Ativado.

- Efeito do tratamento no pH foi significativo;
- AAC tendem a neutralizar o efluente (GSCHLÖBL et al., 1998).

Resultado das análises laboratoriais das amostras do sistema de tratamento de águas cinzas.

Parâmetros		DEZ/14	MAR/15	JUL/15	SET/15	DEZ/15	FEV/16
Parame	etros	WL WL		WL+ FCA	BF + WL + FCA	BF + WL + FCA	BF + WL + FCA
Cond.	Entrada	280,50	273,00	542,00	-	-	-
Elétrica (µS/cm)	Saída	721,00	704,00	813,00	-	-	-
Turbidez	Entrada	168,00	195,00	249,00	46,40	121,00	-
(NTU)	Saída	46,70	48,30	4,50	10,20	1,95	-
SST	Entrada	99,00	55,80	176,00	42,00	64,00	605,00
(mg/L)	Saída	28,50	20,60	7,00	10,00	2,67	< 5,3

BF = Biofiltro. WL = Wetland. FCA = Filtro de Carvão Ativado.

- A condutividade elétrica está associada à presença de íons dissolvidos => indicação de concentração de sais no sistema;
- SST sendo removidos por processos físicos (redução turbidez); parte pode estar sendo dissolvida, contribuindo para o aumento da condutividade;

Resultado das análises laboratoriais das amostras do sistema de tratamento de águas cinzas.

		DEZ/14	MAR/15	JUL/15	SET/15	DEZ/15	FEV/16
Parâme	tros	WL	WL	WL + FCA	BF + WL + FCA	BF + WL + FCA	BF + WL + FCA
DQO	Entrada	508,00	818,00	448,00	202,00	386,00	1724,00
(mgO_2/L)	Saída	463,00	158,00	37,00	49,00	43,00	9,00
DBO	Entrada	196,00	358,00	433,00	88,00	99,00	871,30
(mgO_2/L)	Saída	361,00	62,00	28,00	19,00	4,00	1,37

BF = Biofiltro, WL = Wetland, FCA = Filtro de Carvão Ativado.

- Remoção de DBO e DQO não satisfatória na primeira análise devido o sistema estar no início da operação;
- Adição do FCA e do BF aumentou a eficiência de remoção do sistema;

Valores de eficiências do sistema de tratamento de águas cinzas.

	DEZ/14	MAR/15	JUL/15	SET/15	DEZ/15	FEV/16
Parâmetros	WL	WL	WL + FCA	BF + WL + FCA	BF + WL + FCA	BF + WL + FCA
Turbidez (NTU)	72,22	75,20	98,19	78,00	98,38	-
SST (mg/L)	71,20	63,10	96,02	96,00	95,80	99,10
DQO (mgO ₂ /L)	8,90	80,70	91,74	75,70	88,90	99,50
DBO (mgO ₂ /L)	•	82,70	93,53	78,40	96,00	99,80

BF = Biofiltro. WL = Wetland. FCA = Filtro de Carvão Ativado.

- Fev/16 realizou-se um teste simulando uso intenso de pias e da lavanderia
- O sistema foi eficiente na remoção da carga orgânica;

Resultados obtidos para Surfactantes, Sólidos Sedimentáveis e Óleos e Graxas em fev/2016.

Parâmetro		Resultado	Referência	Eficiência (%)	
Surfactantes	Entrada	90,9	-	00 56	
(mg/L)	Saída	0,4	até 2,0mg/L	99,56	
Óleos e graxas	Entrada	345,7	-	> 00 0 7	
(mg/L)	Saída	< 3,2	até 20 mg/L	> 99,07	
Sólidos	Entrada	0,5	-	00.00	
sedimentáveis (ml/L)	Saída	< 0,1	<1,0 ml/L	> 80,00	

- Biodegradação dos surfactantes ocorre por meio da atividade metabólica de microorganismos (HENRIQUE BONFIM, 2006);
- Remoção dos surfactantes está ligada a remoção da DQO (RAMOS et. al, 2002);
- Eficiência elevada na remoção de óleos e graxas e sólidos sedimentáveis;

Resultado da análise de potabilidade básica do afluente do sistema de tratamento de água cinza em fev/2016

POTABILIDADE BÁSICA						
Parâı	metro	Resultado	Referência Portaria 2914 MS			
Contagem de Bacte	érias Heterotróficas	360	500 UFC/mL			
Cloro Residual	Livre - Aquoso	0,82	0,2 a 5,0			
Cultura Bacteriológica de	Coliformes Termotolerantes	Ausência /100 mL	Ausência /100 mL			
Água Coliformes Totais		Presença /100 mL	Ausência /100 mL			
Cor - A	Aquoso	12,9	15			
Turbidez	- Aquoso	4,23	100			

 Para se eliminar a presença de coliformes totais da água cinza tratada, espera-se que aumentando a dosagem de cloro no sistema será possível eliminar as bactérias presentes em sua totalidade.

CONCLUSÕES

O sistema de tratamento se mostrou eficiente na produção de um efluente mais compatível com os usos que foram propostos.

Potabilidade:

- Coliformes Totais foi o único parâmetro em desacordo com a Portaria Nº 2914 do Ministério da Saúde;
- pode ser corrigido com a aplicação de maior quantidade de cloro no sistema.

Promoção da redução de impactos no meio ambiente:

- · contribui com a economia da residência;
- diminui a incidência de falta de água nas residências;
- melhora a massa vegetal paisagística na residência, e;
- sobretudo, reduz a pressão sobre os sistemas públicos de abastecimento de água e tratamento de esgoto doméstico.

Vetiveria zizanioides:

Potencialidade para tratamento de efluentes domésticos no sistema AAC Integrando ao ambiente residencial um melhor paisagismo.

DIVULGAÇÃO

Sistema de tratamento

· Encontro Brasileiro de Segurança Florestal tem programação definida

DIVULGAÇÃO

Registro de patentes

RECUPERAÇÃO E TRATAMENTO DE AGUAS CINZAS POR MEIO DE KIT WETLAND CONJUGADO COM REAPROVEITAMENTO DE ÁGUAS PLUVIAIS PARA REUSO DOMÉSTICO, INDUSTRIAL, COMERCIAL E URBANO.

OBRIGADO

sebastiao.tomas@yahoo.com.br (0**31) 97318-2085

Soluções Ambientais e Bioengenharia